If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20=-16t^2+140t+80
We move all terms to the left:
20-(-16t^2+140t+80)=0
We get rid of parentheses
16t^2-140t-80+20=0
We add all the numbers together, and all the variables
16t^2-140t-60=0
a = 16; b = -140; c = -60;
Δ = b2-4ac
Δ = -1402-4·16·(-60)
Δ = 23440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{23440}=\sqrt{16*1465}=\sqrt{16}*\sqrt{1465}=4\sqrt{1465}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-140)-4\sqrt{1465}}{2*16}=\frac{140-4\sqrt{1465}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-140)+4\sqrt{1465}}{2*16}=\frac{140+4\sqrt{1465}}{32} $
| 7d=8d+9 | | 5r=4r+6 | | -6.3z=81.9 | | x²+8x+19=0 | | -6(x-3)=3(x=9) | | 4d=-40 | | x2+8x+19=0 | | -6.6=r+4.8 | | 160=360-2x | | 16x×16x=1/32 | | 10(n=4)=90 | | 4m^2−29m−24=0 | | -12.1x+14.3=-34.1 | | 3(2n+4)=18 | | -12=4w+4 | | -2+2v=-14 | | x-23+x+42+4x-1=180 | | 11/15=1/5+28x/9 | | n+5/2=7 | | -8(x-8)=2(x=67) | | 16-4x=-2(x-1) | | x²+x-770=0 | | 1/2x-2/3=-11/18 | | X2-4x=32 | | -16(x-8)=4(x=62) | | -4(w-3)=-6w-2 | | 3-7c/8=-12 | | 3x-7=8x-16 | | 4(x+2)-29=4x-21 | | (2x-5)+28=180 | | 11=w=44 | | 4(x-29)+2=4x-114 |